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Workpackage at a glance

• Model management
- Consistent modeling
- Structure-respecting 

identification and order 
reduction

- Experiment design
- Subspace model ID for large-

scale systems.

• Distributed MPC and state 
estimation
- Decentralized MPC
- Distributed price-coordinated 

MPC
- Distributed state estimation.

• Higher-level real-time 
optimization
- Dynamical real-time optimizers for 

plant-wide optimization: stability, 
performance and robustness

- Optimal re-configuration of a 
network of distributed MPC 
controllers

- Algorithms for distributed 
optimization of large-scale 
problems.

• Prototyping and concept 
integration
- Matlab toolbox with core algorithms
- Prototypes for DEMO
- Support for integration with other 

work-packages.



Model management
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Model management

• Objective: modeling 
framework for large-scale 
hierarchical / distributed control 
and optimization

- Models for control and 
optimization at different levels of 
decision/making

- Different levels of fidelity 
(bandwidth, operational range) 
suitable for a particular purpose.

- Consistent to each other

- Uncertainty estimates to be 
available for robust control 
design

• Issues: model identification 
and order reduction in large-
scale interconnected systems

- Managing complexity

- Exploiting a priori known 
structure

- Designing identification 
experiments to obtain optimal 
models for a specific control 
purpose
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Model merging 1

• System ID of large-scale 
interconnected systems

1.Identifying subsystems

2.Connect sub-models

• Challenges

- Correct interconnections of 
sub-models (considering 
cross-correlations)

- Consistent handling of 
overlaps in identified models

• Merging ARX models of the 
same process

- Different model orders

- Different spectra of the excitation 
signals – different quality of models

- Merging not possible in parameter 
space

• A novel method was obtained 
based on fictitious I/O data
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Model merging 2

4th order model
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Structure-respecting modeling

• Structured order reduction

- Goal: obtaining reduced-order model 
preserving interconnection structure

- Prior KTH result – order reduction of serial 
connection

- Extension in WIDE: order reduction for 
parallel systems.

• Motivation

- Units operating in parallel frequently occur  
in the industry (e.g. boilers feeding steam 
to a common header).

- Not all units operate simultaneously –
combinatorial number of configurations of 
different control models

- A systematic procedure was proposed

• Proposed solution outperforms non-
structured reduction method and is 
comparable to a heuristics for boilers
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Distributed MPC and state 
estimation
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Distributed MPC and state estimation

• Objectives: 
- Developing novel methods for 

model-based predictive control 
for large-space systems 

- State-estimation for output-
feedback distributed MPC.

• Approach
- Distributing computational load 

among multiple units

- Different schemes of inter-unit 
communication

� Decentralized 

� Cooperating

� Coordinated

• Issues
- Handling complexity –

limitations on computational 
resources

- Control issues – stability, 
robustness

- Communication issues –
integration with WP4

- Flexibility – robustness to 
topological changes in 
controlled network.
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Distributed MPC

•Decentralization based on 
Dual decomposition of 
Quadratic Programming:
- Each controller solves its 

own local optimization 
problem.

- Each local optimization 
problem includes a term related 
to fulfillment of coupling 
constraints scaled by coordinate 
prices.

- The coordinator manipulates 
prices in order to minimize the 
disagreement on  coupling 
constraints.

- Under convexity assumption, 
equilibrium prices are found that 
all coupling constraints are 
achieved and the global 
optimum is reached. 

• Iterative algorithm (~102

iterations in 1 sampling 
period)
- Trading high computational load 

for large data exchange

- Suitable for slow processes 
as water networks

• Coordination algorithm

-Centralized (hierarchical 
architecture) – faster 
convergence

-Decentralized (peer-to-peer 
communication) – slower but 
tolerant to topology changes



11 WIDE File Number

Distributed MPC – water network example

• Network decomposition
- WN → graph (edge weight ~ 

pumping capacity between 
tanks)

- Step 1: Condensation of leaves 
(condense all leaves with 
parents)

- Step 2: Epsilon decomposition
of the remaining network
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Architectures for distributed control
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Distributed MPC – central coordinator

• 19 subsystems
• Central coordinator

- Quasi-Newton L-BFGS

• Stopping condition:
- worst consensus error < 1 

m3/hrs

Sub-problem sizes:
Group 1:

Number of variables       = 220
Non-equality constraints  = 440

Group 2:
Number of variables       = 140
Non-equality constraints  = 280

Group 3:
Number of variables       = 150
Non-equality constraints  = 300

…
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Distributed MPC – decentralized coordinator

•19 subsystems
•Local controllers 

communicate only with 
their neighbors

•Price coordination: 
Projected Nesterov 
gradient method
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Distributed state estimation

• Motivation: replacing state 
measurements in output-feedback 
distributed control.

• Proposed solution: Kalman filter 
network 

- topology corresponding to the 
process interconnection map.

- Small overlap in locally estimated 
variables.

- Local agents know only a part of the 
overall model

- Generally sub-optimal (relative to the 
centralized Kalman filter).

- Re-configurability, robustness to 
changes in network topology.
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Kalman filter for systems with communication delays 1

• New implementation of KF 
for this class of systems –
lower computational demand
- A set of pre-computed gains

- Recasting Riccati eqn into a 
dynamical equation of a 
reduced-rank matrix factor

• Process data transmitted 
over the network
- Delayed and lost packets.

• Assumptions
- Delays in integer multiples of 

sampling intervals

- Data transmitted with the time 
stamps.

• Optimal estimator – time 
varying Kalman filter for system 
augmented by a chain of 
delays 
- Finite length; longer delays �

lost data

- Samples may arrive out of 
order, with several different 
time-stamps at a time.
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Kalman filter for systems with communication delays 2

• Time-varying Kalman filter 
- computationally expensive for 

DCS

• Proposed suboptimal solution :
- Missing values are replaced by 

estimates.
- When the missing value arrives, 

the effect of value replacement is 
removed and the optimality 
recovered.

• A generalization: 
- Estimator is optimal when less 

then N samples is missing.
- Pre-computed gains for each 

combination of missing samples

• On-line computational complexity
- moderate increase relative to 

asymptotic KF

2 4 6 8 10 12 14 16 18 20

1

1.5

2

2.5

3

3.5

maximum delay

m
ea

n 
es

t.
 e

rr
or

Simulation results:  90% samples delayed

 

 
1 optimal estimate
2 measurements replaced
3 delayed data ignored
4 time stamps ignored

PID

observer

processdelays

Actuator
node

Sensor
node

Set point
acknowledgement



Higher-level RTO
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Higher – level RTO

• Objectives

- Framework for robust integrated 
plant-wide control and optimization

• Going beyond  the classical steady-
state economic optimizer paradigm .

- Optimizer computes optimal set-
points/steady state targets.

- Subordinate MPC is responsible for 
achieving these targets.

• Dynamic optimizer is needed for 
better responsiveness to demands

- Transitions is costly and/or result in off-
specs products

- Significant delays, storages and recycle 
loops between units controlled by MPC.

• Issues

- Stability and robustness of the 
interlayer integration considering 
feedback spanning several layers.

- Uncertainty handling in the 
hierarchical framework and worst 
case control.

- Integrating a centralized hybrid 
MPC – optimizer (higher level) and 
decentralized linear MPC (lower 
level).


